

HL Topic 5 & 15. Energetics / Thermochemistry (First test)

For each question choose the answer you consider to be the best.

- **1.** When some solid ammonium nitrate was dissolved in water the temperature decreased from 22 °C to 3 °C. What can be deduced from this observation?
- A. The dissolving is endothermic and ΔH is positive.
- B. The dissolving is endothermic and ΔH is negative.
- C. The dissolving is exothermic and ΔH is positive.
- D. The dissolving is exothermic and ΔH is negative.

- **2.** Which of the following conditions normally apply to the standard enthalpy change for a reaction, ΔH ?
 - I. A pressure of 100.0 kPa
 - II. A temperature of 298 K
 - III. One mol of all reactants and all products
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

- 3. Which statements are correct for all exothermic reactions?
 - I. The products are more stable than the reactants
 - II. The bonds in the products are stronger than the bonds in the reactants
 - **III.** The enthalpy of the products is less than the enthalpy of the reactants
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

4. Which is a correct statement concerning the reaction shown?

$$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g) \Delta H^{\oplus} = -92 \text{ kJ}$$

- A. 92 kJ of energy are absorbed for every mol of ammonia formed.
- B. 92 kJ of energy are released for every mol of ammonia formed.
- C. 46 kJ of energy are absorbed for every mol of ammonia formed.
- D. 46 kJ of energy are released for every mol of ammonia formed.

5. The heat capacities (in kJ kg⁻¹ K⁻¹) of four elements are:

carbon (graphite) 0.709

copper 0.385

gold 0.129

iron 0.449

Which element will show the greatest increase in temperature if 2 kJ of heat is supplied to 0.100 kg samples of each element at the same initial temperature?

- A. carbon (graphite)
- B. copper
- C. gold
- D. iron
- **6.** The heat produced when 0.010 mol of propanone was combusted raised the temperature of 250 g of water by 14 $^{\circ}$ C.

The specific heat capacity of water is 4.2 J g⁻¹ K⁻¹.

Which is the correct expression for value of the enthalpy of combustion of propanone (in J mol⁻¹)?

A. <u>250 x 4.2 x 287</u>

0.010

B. <u>250 x 4.2 x 14</u>

0.010

C. <u>0.010 x 4.2 x 287</u>

250

D. 250 x 4.2 x 14 x 0.010

7. When one mol of magnesium and one mol of hydrogen are combusted the enthalpy changes are – 602 kJ and - 242 kJ respectively.

$$Mg(s) + \frac{1}{2} O_2(g) \rightarrow MgO(s)$$
 $\Delta H = -602 \text{ kJ}$

$$H_2(g) + \frac{1}{2} O_2(g) \rightarrow H_2O(g)$$
 $\Delta H = -242 \text{ kJ}$

What is the enthalpy change for the reduction of one mol of magnesium oxide by hydrogen?

$$MgO(s) + H_2(g) \rightarrow Mg(s) + H_2O(g)$$

- A. + 844 kJ
- B. 844 kJ
- C. 360 kJ
- D. + 360 kJ
- **8.** The enthalpy change for the dimerisation of two mol of nitrogen dioxide to form one mol of dinitrogen tetroxide is + 123 kJ.

$$2NO_2(g) \rightarrow N_2O_4 \Delta H^{\oplus} = + 123 \text{ kJ}$$

The enthalpy change for the formation of one mol of $NO_2(g)$ from its elements is – 57 kJ

$$\frac{1}{2} N_2(g) + O_2(g) \rightarrow NO_2(g) \Delta H = -57 \text{ kJ}$$

What is the enthalpy change for the formation of one mol of dinitrogen tetroxide from its elements?

$$N_2(g) + 2O_2(g) \rightarrow N_2O_4(g)$$

- A. + 9 kJ
- B. 9 kJ
- C. + 66 kJ
- $D. 66 \, kJ$

9. Which of the following enthalpy changes can be calculated using **only** bond enthalpies and average bond enthalpies?

I.
$$C_2H_4(g) + H_2(g) \rightarrow C_2H_6(g)$$

II.
$$C_8H_{16}(I) + H_2(g) \rightarrow C_8H_{18}(I)$$

III.
$$CH_4(g) + 2F_2(g) \rightarrow CF_4(g)$$

- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III
- **10.** Ethane can react with chlorine in ultraviolet light to form chloroethane:

$$C_2H_6(g) + Cl_2(g) \rightarrow C_2H_5Cl(g) + HCl(g)$$

The relevant bond enthalpies are:

Bond	ΔH / kJ mol ⁻¹
C-C	347
C-H	413
CI-CI	243
H-Cl	432
C-Cl	346

What is the enthalpy change, ΔH , for this reaction (in kJ)?

11. Which expression gives the correct value for the standard enthalpy change of combustion of glucose in kJ mol⁻¹?

$$C_6H_{12}O_6(s) + 6O_2(g) \rightarrow 6CO_2(g) + 6H_2O(l)$$

Compound	C ₆ H ₁₂ O ₆ (s)	CO ₂ (g)	H ₂ O(I)
$\Delta H_{\rm f}^{\oplus}$ / kJ mol ⁻¹	- 1273	- 394	- 286

A.
$$6(-394) + 6(-286) - 1273$$

C.
$$6[(-394) + (-286) - 1273]$$

12. Which are endothermic steps in the Born Haber cycle for the formation of sodium bromide?

I.
$$Br(g) + e^{-} \rightarrow Br^{-}(g)$$

II.
$$Na(g) \rightarrow Na+(g) + e^{-g}$$

III.
$$Na(s) \rightarrow Na(g)$$

A. I and II only

B. I and III only

C. II and III only

D. I, II and III

13. Which is the correct equation for the lattice enthalpy of magnesium chloride?

A.
$$Mg^{2+}(g) + 2Cl^{-}(g) \rightarrow MgCl_{2}(s)$$

B.
$$Mg(s) + Cl_2(g) \rightarrow MgCl_2(s)$$

C.
$$Mg^{2+}(g) + 2Cl^{-}(g) \rightarrow MgCl_{2}(g)$$

D.
$$Mg(s) + 2Cl(g) \rightarrow MgCl_2(s)$$

14. Which reaction in the Born Haber cycle for the formation of magnesium oxide is the most exothermic?

A.
$$O(g) + 2e^{-} \rightarrow O^{2-}(g)$$

B.
$$Mg(s) + O_2(g) \rightarrow MgO(s)$$

C.
$$Mg(g) \rightarrow Mg^{2+}(g) + 2e^{-}$$

D.
$$Mg^{2+}(g) + O^{2-}(g) \to MgO(s)$$

15. Which compound has the highest lattice enthalpy?

16. Which reaction will have the largest positive entropy change?

A.
$$H_2(g) + I_2(g) \rightarrow 2HI(g)$$

B.
$$SO_2(g) + 2O_2(g) \rightarrow 2SO_2(g)$$

C.
$$Mg(s) + \frac{1}{2} O_2(g) \rightarrow MgO(s)$$

D.
$$PCl_5(g) \rightarrow PCl_3(g) + Cl_2(g)$$

- 17. Which change does not lead to an increase in entropy?
- A. Dissolving salt in water
- B. Hydrogenating unsaturated fats
- C. Boiling water
- D. Melting ice
- **18.** What is the standard entropy change (in J K⁻¹ mol⁻¹⁾ for the following reaction?

$$NH_3(g) + HCl(g) \rightarrow NH_4Cl(s)$$

	NH₃(g)	HCI(g)	NH ₄ Cl(s)
S / J K ⁻¹ mol ⁻¹	193	187	96

A.
$$-96$$

$$C. - 284$$

19. Which are the correct signs for a reaction that is spontaneous at low temperatures but non-spontaneous at high temperatures?

	$\Delta \mathcal{H}^{\Theta}$	∆ <i>S</i> [⊕]
Α.	Positive	Positive
В.	Positive	Negative
C.	Negative	Negative
D.	Negative	Positive

- **20.** The standard enthalpy change, ΔH , for a chemical reaction is 100 kJ mol⁻¹ and the entropy change at 27 °C for the reaction is + 10 J K⁻¹ mol -1. What is the value of ΔG (in kJ) for this reaction?
- A. 2900
- B. **–** 103
- C. 370
- D. 97