

# Problem of the Week Problem C and Solution <br> Stack 'Em Up 

## Problem

Three cubes with side lengths $1 \mathrm{~m}, 2 \mathrm{~m}$ and 3 m are stacked on top of each other as shown.

Determine the total surface area of the stack, including the bottom.

## Solution

To determine the areas we will primarily use Area $=$ length $\times$ width.
Each cube has four exposed square sides so the total area of all the sides is $4 \times(1 \times 1)+4 \times(2 \times 2)+4 \times(3 \times 3)=4 \times(1)+4 \times(4)+4 \times(9)=4+16+36=56 \mathrm{~m}^{2}$.

To determine the exposed top area of each of the cubes look down on the tower and see a cross-section like the one below.


This exposed area is exactly the same as the side area of one face of the largest cube. Therefore, the top exposed area is $3 \times 3=9 \mathrm{~m}^{2}$. The top area and the bottom area are the same. Therefore, the bottom area is $9 \mathrm{~m}^{2}$.

The total surface area is $56+9+9=74 \mathbf{m}^{2}$.
Extension: Three cubes with side lengths $x, y$ and $z$ are stacked on top of each other in a similar manner to the original problem such that $0<x<y<z$. Show that the total surface area of the stack, including the bottom, is $6 z^{2}+4 y^{2}+4 x^{2}$.

