Bonding Test, HL Chemistry, Spring 2017 [54 marks]

You may use your calculator and the supplied tables from the Data booklet.

Multiple choice.

Circle the correct answer on your answer sheet.

 $\label{eq:linear} 1. \quad \mbox{Nitroglycerine, $C_3H_5N_3O_9$, can be used in the manufacture of explosives. What is the coefficient of $$[1 mark]$ $$C_3H_5N_3O_9(l)$ when the equation for its decomposition reaction is balanced using the lowest whole numbers? }$

$$_C_3H_5N_3O_9(l) \rightarrow _CO_2(g) + _H_2O(l) + _N_2(g) + _O_2(g)$$

- A. 2
- B. 4
- C. 20
- D. 33
- 2. Which sample contains the largest amount, in mol, of oxygen atoms?
 - A. 0.20 mol P_2O_5
 - B. 0.30 mol $O_{\rm 3}$
 - C. 0.40 mol CH_3COOH
 - D. 0.80 mol H_2O
- 3. 300 cm^3 of water is added to a solution of 200 cm^3 of $0.5 \text{ mol} \text{ dm}^{-3}$ sodium chloride. What is the concentration [1 mark] of sodium chloride in the new solution?
 - A. $0.05\ mol\ dm^{-3}$
 - B. $0.1\ mol\ dm^{-3}$
 - C. 0.2 mol dm^{-3}
 - D. $0.3\ mol\ dm^{-3}$

	1 s	2s	2p		
I.	↑↓	↑↓	Î	Î	Î
II.	↑↓	↑↓	↑↓	Î	
III.	↑↓	↑↓	î	Ļ	î

4. Which electron configurations do not follow the Hund's rule?

- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

[1 mark]

5.	Wh	ich shows the sub-levels in order of increasing energy in the fourth energy level of an atom?	[1 mark]
	Α.	f < d < p < s	
	Β.	p < d < f < s	
	C.	d < f < p < s	
	D.	s	
6.	Wh	ich series is arranged in order of increasing radius?	[1 mark]
	A.	${ m F} < { m Cl}^- < { m Cl}$	
	Β.	$\mathrm{Rb} < \mathrm{K} < \mathrm{Na}$	
	C.	$\mathrm{Al}^{3+} < \mathrm{Mg}^{2+} < \mathrm{Na}^+$	
	D.	$\mathrm{I^-} < \mathrm{Br^-} < \mathrm{Cl^-}$	
7.	Wh	ich compounds have an ionic lattice structure in the solid state?	[1 mark]
	I.	Silicon dioxide	
	II.	Sodium fluoride	
	.	Ammonium nitrate	
	Α.	I and II only	
	Β.	I and III only	
	C.	ll and lll only	
	D.	I, II and III	
8.	Wh	ich particles are responsible for electrical conductivity in metals?	[1 mark]
	Α.	Anions	
	Β.	Cations	
	C.	Electrons	
	D.	Protons	
9.	Wh	at is the formula of magnesium nitride?	[1 mark]
	Α.	Mg_2N_3	
	Β.	Mg_3N_2	
	C.	${ m Mg(NO_3)}_2$	
	D.	$Mg(NO_2)_2$	
10.	Wh	ich sequence has the molecules in order of increasing nitrogen-nitrogen bond length?	[1 mark]
	Α.	$\mathrm{N}_2 < \mathrm{N}_2\mathrm{H}_4 < \mathrm{N}_2\mathrm{H}_2$	
	Β.	$\mathrm{N}_2 < \mathrm{N}_2\mathrm{H}_2 < \mathrm{N}_2\mathrm{H}_4$	
	C.	$\mathrm{N_2H_4} < \mathrm{N_2H_2} < \mathrm{N_2}$	
	D.	$\mathrm{N_2H_2} < \mathrm{N_2H_4} < \mathrm{N_2}$	
11.	Wh	ich bonds are arranged in order of increasing polarity?	[1 mark]
	Α.	H-F < H-Cl < H-Br < H-I	
	Β.	H-I < H-Br < H-F < H-CI	
	C.	H-I < H-Br < H-CI < H-F	

 $\mathsf{D}. \quad \mathsf{H}\text{-}\mathsf{Br} < \mathsf{H}\text{-}\mathsf{I} < \mathsf{H}\text{-}\mathsf{CI} < \mathsf{H}\text{-}\mathsf{F}$

 $_{\rm 12.}$ Which diagram represents the bonding in $\rm SiO_2?$

- 13. Which molecule is polar?
 - A. CH_2Cl_2
 - $\mathsf{B}.\quad BCl_3$
 - C. Cl_2
 - $\mathsf{D}.\quad CCl_4$
- 14. The Lewis (electron dot) structure of aspirin is represented below.

What are the approximate values of the bond angles α,β and $\gamma,$ in the molecule?

	α	β	γ
A.	90°	104.5°	104.5°
B.	90°	120°	120°
C.	109.5°	120°	120°
D.	109.5°	104.5°	120°

[1 mark]

[1 mark]

15.	Dia allo	mond, C ₆₀ fullerene and graphite are allotropes of carbon. Which statements are correct about these tropes?	[1 mark]
	I.	In diamond each carbon is held in a tetrahedral arrangement.	
	II.	In C ₆₀ fullerene each carbon is held in a trigonal arrangement.	
	III.	In graphite each carbon is held in a tetrahedral arrangement.	
	Α.	I and II only	
	Β.	I and III only	
	C.	II and III only	
	D.	I, II and III	
16.	Whi	ich molecule has an octahedral shape?	[1 mark]
	A.	SF ₆	
	Β.	PCI ₅	
	C.	XeF ₄	
	D.	BF ₃	
17.	Whi	ich forces are present between molecules of carbon dioxide in the solid state?	[1 mark]
	A.	Permanent dipole-permanent dipole interactions	
	Β.	Temporary dipole-induced dipole interactions (London/dispersion forces)	
	C.	Covalent bonding	
	D.	Ionic bonding	
18.	Whi	ich process involves the breaking of hydrogen bonds?	[1 mark]
	Α.	$2\mathrm{HI}(\mathrm{g}) ightarrow \mathrm{H}_2(\mathrm{g}) + \mathrm{I}_2(\mathrm{g})$	
	Β.	${ m CH_4(g)} ightarrow{ m C(g)+4H(g)}$	
	C.	${ m H}_2({ m l}) ightarrow { m H}_2({ m g})$	
	D.	$\rm NH_3(l) \rightarrow \rm NH_3(g)$	
	W/h	ich change explains why the boiling points of the balogons increase as their melocular masses increase?	[1 mark]
19.		The intermolecular attraction due to temporarily induced dipoles increases	[ב ווומוא]
	д.	The analytication of the stigen melocules increases.	

- B. The gravitational attraction between molecules increases.
- C. The polarity of the bond within the molecule increases.
- D. The strength of the bond within the molecule increases.
- 20. What is the correct order of **increasing** boiling points?
 - $\label{eq:charge} \text{A.} \quad CH_3CH_3 < CH_3CH_2Cl < CH_3CH_2Br < CH_3CH_2I$
 - ${\tt B.} \quad {\rm CH_3CH_2Cl} < {\rm CH_3CH_2Br} < {\rm CH_3CH_3} < {\rm CH_3CH_2I}$
 - $\label{eq:charge} \mbox{C.} \quad CH_3CH_2I < CH_3CH_2Br < CH_3CH_2Cl < CH_3CH_3$
 - $\label{eq:charge} \text{D.} \quad \mathrm{CH}_3\mathrm{CH}_2\mathrm{Br} < \mathrm{CH}_3\mathrm{CH}_2\mathrm{Cl} < \mathrm{CH}_3\mathrm{CH}_2\mathrm{I} < \mathrm{CH}_3\mathrm{CH}_3$

21. Which substance is made up of a lattice of positive ions and free moving electrons?

- A. Graphite
- B. Sodium chloride
- C. Sulfur
- D. Sodium

22. The diagrams below show s and p orbitals in different positions. Which combinations can form a σ -bond? [1 mark]

- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III
- 23. Which species have delocalized electrons?

A. I and II only

- B. I and III only
- C. II and III only
- D. I, II and III

24. What is the hybridization of the carbon atom, and the number of σ and π bonds in the methanal molecule? [1 mark]

			H-C
	Hybridization	σbonds	π bonds
Α.	sp^2	3	1
Β.	sp^3	3	1
C.	sp^3	4	0
D.	sp^2	4	0

25. A student heated a solid in a crucible. The student measured the mass of the solid and crucible before and after [1 mark] heating and recorded the results.

Mass	of crucible	and s	solid	before heating	=	$101.692 \mathrm{~g}$
Mass	of crucible	and s	solid	after heating	=	89.312 g

What value should the student record for the mass lost in grams?

- A. 12.4
- B. 12.38
- C. 12.380
- D. 12.3800

Free response.

Please write all answers in the provided answer box. Show all work on calculation questions.

26. When iodine reacts with excess chlorine, ICl_3 can form. Deduce the Lewis (electron dot) structure of ICl_3 and [4 marks] ICl_2^- and state the name of the shape (molecular) of each species.

	ICl ₃	ICl ₂ ⁻
Lewis structure		
Name of shape		

 $_{27a.}$ State the shape of the ozone, O₃, molecule and estimate the bond angle.

[2 marks]

Shape:

Bond angle:

 $_{\rm 27c.}$ In terms of σ and π bonds, describe the two oxygen-oxygen bonds in the Lewis structure.

27d. The two oxygen-oxygen bonds in ozone are in fact of equal length. Deduce why this is the case and how the [2 marks] length of these would compare to oxygen-oxygen bond lengths in hydrogen peroxide, H_2O_2, \mbox{and} in the oxygen molecule, O_2 .

[1 mark]

28a. Apply the Aufbau principle to state the **full** electron configuration for an atom of phosphorus.

 PCl_3

 PCl_5

28c. Predict the molecular shapes and the bond angles in the two molecules.

	PCl ₃	PCl ₅
Shape		
Bond angles		

 $_{\mbox{28d.}}$ Identify the type of hybridization present in $PCl_3.$

[1 mark]

[3 marks]

[4 marks]

 $_{\mbox{28e.}}$ Compare the melting points of PCl_3 and PCl_5 and explain the difference.

29b. (i) Define the term *electronegativity*.

[4 marks]

(ii) Compare the relative polarities of the C-H bond in ethene and the N-H bond in hydrazine.

(iii) Hydrazine is a polar molecule and ethene is non-polar. Explain why ethene is non-polar.

 $\ensuremath{\mathbb{C}}$ International Baccalaureate Organization 2017

International Baccalaureate® - Baccalauréat International® - Bachillerato Internacional®

Printed for Cairo American College